,

AKO NA TESNOSŤ OKIEN?

O skúške prievzdušnosti, ktorú je povinný vykonať výrobca okien ako súčasť počiatočnej skúšky typu výrobku sme už písali v našom príspevku: https://mobilab.sk/byte-mam-zimu-aj-ked-radiatory-idu-naplno/ . Skúška sa vykonáva často na prototype v predvýrobnej etape. Po zabudovaní okien do stavby sa často potom stretávame s realitou netesnosti. Niekedy  po zabudovaní okien do stavby na preukázanie tesnosti stavby ponúkame skúšku tesnosti tzv. Blower door test alebo inak nazývaný aj test vzduchotesnoti alebo vzduchovej nepriepustnosti budovy podľa STN EN ISO 9972 . Tento test sa najčastejšie využíva pri nízkoenergetických domoch na preverenie ich vzduchotesnoti. Tento test má preveriť stavbu, či spĺňa požadované normy energetickej triedy. Postupuje sa tak, že do otvorených vonkajších dverí (vchodových alebo balkónových) sa osadí tesniaci nastaviteľný rám (pre rôzne veľkosti otvorov), spolu so vzduchotesnou fóliou s otvorom pre osadenie ventilátora. Automatickým riadením otáčok ventilátora sa dosahuje zadaný tlakový rozdiel medzi vonkajším a vnútorným priestorom. Test by mal ukázať prípadné netesnosti v obalovom plášti budovy. Výsledkom merania je hlavná hodnotiaca veličina – intenzita výmeny vzduchu, ktorou sa stanoví ako často dochádza k výmene vzduchu celého objemu testovanej stavebnej jednotky (dom, byt, miestnosť) za hodinu, pri referenčnom tlakovom rozdiele medzi interiérom a exteriérom, ktorý je zvyčajne 50 Pa. Okrem toho sa dajú určiť aj ďalšie odvodené veličiny. Na dosiahnutie výpovedného identifikačného parametra n50 vzduchotesnosti, je meraný objemový prúd vzduchu delený objemom budovy. Počas vzniku tlakovej diferencie (podtlak v budove) môžu byť ľahko nájdené miesta netesností v obale budovy. Netesnosti vznikajú v miestach ako sú prestupy elektrických káblov a rozvodov zdravotechniky, inštalačné krabice, styky okien a dverí, spoje parozábran a protivetrových fólií, výrezy do podkrovia a i. Dôsledok týchto nedostatkov je nesprávne utesnená budova, ktorá zapríčiňuje zvýšenú spotrebu energie z dôvodu jej úniku cez netesnosti v obvodovom plášti. Táto metóda nemeria mieru infiltrácie vzduchu budovou. Výsledky tejto skúšky ventilátora možno použiť na odhad infiltrácie vzduchu pomocou výpočtu (STN EN ISO 9972).

To platí pre montované stavby. Pri murovaných stavbách táto skúška má zmysel vtedy, keď sú odstránené zjavné nedokonalosti vyhotovenia. Vtedy nám Blower door test môže poukázať na hlavnú príčinu netesnosti a to netesné okná, ak sa nám ani po odstránení zjavných netesností (prestupy elektrických káblov a rozvodov zdravotechniky, inštalačné krabice) nepodarí dosiahnuť projektované:

n50= 4,0 h–1 – spotreba 33 kWh/m2/rok (4,0 h–1 je hraničná hodnota, kedy hovoríme, že objekt je dobre utesnený);

n50= 1,5 h–1 – spotreba 20 kWh/m2/rok (1,5 h–1 je hraničná hodnota pre nízkoenergetické domy);

n50= 0,6 h–1 – spotreba 15 kWh/m2/rok (0,6 h–1 je hraničná hodnota pre domy s nízkou takmer nulovou spotrebou)

Prichádza skúška prievzdušnosti na zabudovanom okne.

Netesnosti sa dajú zistiť nasledovnými pomôckami a meradlami:

 

1) Holé ruky

Medzi najjednoduchšie patrí metóda, kedy sa v interiéri zariadením Blower-Door test vytvorí podtlak cca 20 Pa až 50 Pa a holými rukami sa v bezprostrednej blízkosti podozrivých konštrukcií overuje prúdenie vzduchu. Pre väčšiu citlivosť je možné ruky navlhčiť.

Výhody: je možné vykonávať celoročne, mimo zariadenia Blower-Door test nie je potrebné žiadne iné zariadenie

Nevýhody: vykonáva sa iba lokálna kontrola, vyžaduje skúsenosti

obr 1: Zisťovanie netesností využitím ventilátora

2) Zariadenia na tvorbu dymu

zariadením na tvorbu dymu sa v interiéri vytvorí dym a súčasne so zariadením Blower-Door test vytvorí pretlak. V exteriéri sa potom sledujú miesta, kadiaľ dym uniká, ktoré signalizujú najpravdepodobnejšie miesto porúch.

Výhody: plošná kontrola konštrukcií

Nevýhody: dym sa vo vnútri konštrukcií môže šíriť na pomerne veľké vzdialenosti a miesto signalizované v exteriéri môže byť od netesnosti v interiéri pomerne vzdialené, na tvorbu dymu sa používa chemikália

3) Anemometer

Meranie rýchlosti prúdenia vzduchu anemometrom. Metóda obdobná ako pri prvej metóde s tým rozdielom, že sa na detekciu prúdenia používa anemometer, túto metódu bežne používa naša spoločnosť MOBILab.

Výhody: je možné vykonávať celoročne

Nevýhody: vykonáva sa iba lokálna kontrola, vyžaduje skúsenosti, je potrebné špeciálne zariadenie

obr 2: Zisťovanie netesností využitím anemometra s termickou sondou

4) Termovízna kamera

Používa sa pri rozdiele teploty vzduchu medzi interiérom a exteriérom aspoň 5 °C. V interiéri sa termovíznou kamerou nasnímajú všetky konštrukcie. Zariadením Blower-Door test sa na cca 15 min v interiéri vytvorí podtlak cca 20 Pa až 50 Pa. Následne sa opäť vykoná snímanie konštrukcií v interiéri termovíznou kamerou. Netesnosťami je do interiéru nasávaný studenší alebo teplejší vzduch ako je v interiéri, čím zmení konštrukcia v okolí netesností povrchovú teplotu. Z porovnania termovíznych snímok pred vytvorením podtlaku (pri prirodzenom tlakovom rozdiele) a pri podtlaku v interiéri sa stanovia netesné miesta, túto metódu bežne používa naša spoločnosť MOBILab.

Výhody: plošná kontrola konštrukcií, rýchlosť a presnosť

Nevýhody: nemožno vykonávať celoročne, je potrebné špeciálne zariadenie

obr 3: Zisťovanie netesností využitím termovízie

Aj keď takéto netesnosti nájdete na oknách, ťažko dokážete týmito metódami výrobcovi, že Vám zabudoval nepodarok!

Sú snahy (v literatúre) zisťovať pomocou skúšky Blower door testom prievzdušnosť okien, len nemáme poznatky, či niekto porovnával skúšky pred zabudovaním, po zabudovaní podľa EN 1026 a skúškou STN EN ISO 9972. Ťažko si predstaviť, žeby sa Blower door testom odhalila skutočná prievzdušnosť okna (tlak vetra cca 32 km/hod oproti 115 km/hod pri skúške okien), na základe ktorej by bolo možné reklamovať okná.

obr 4: Zisťovanie prievzdušnosti okna vytvorením vzduchotesnej komory z exteriéru

obr 5: Zisťovanie prievzdušnosti okna vytvorením vzduchotesnej komory z interiéru

obr 6: Zisťovanie prievzdušnosti okna vytvorením vzduchotesnej komory z miestnosti, kde je okno zabudované

Blower door testom nekončíme!

Blower door test je možným iniciátorom identifikácie chybného fungovania okna. Ak sa po absolvovaní  Blower door testu ukáže, že najslabším miestom v obálke budovy je okno, môžeme pokračovať skúškou prievzdušnosti.

Vzduchotesná komora sa buduje individuálne podľa dispozície stavby. Vždy sa porovnáva výsledok s utesnenými a neutesnenými pripojovacími a zasklievacimi škárami okna. Ak okno nevyhovie deklarovanej triede prievzdušnosti uvedenej vo vyhlásení parametrov, u zabudovaných okien je vtedy riešením výmena tesnení alebo celých okien.

Objednávateľom Blower door testu, navyše v tejto vykurovacej sezóne roku ponúkame nedeštruktívne zistenie obsahu argónu na náhodne vybraných izolačných sklách osadených v oknách alebo zasklených stenách za zvýhodnenú cenu. Pocit sálania chladu od izolačných skiel vo vykurovacom období alebo prehrievanie skla v lete sú predzvesťou poruchy zasklenia. Môže tomu byť aj keď návrh bol urobený správne avšak pri jeho realizácii došlo k zlyhaniu. Dôsledky sa často prejavujú vo zvýšených nákladoch užívateľov na vykurovanie v zime alebo chladenie v lete. Príčinou môže byť aj zmena rovnobežnosti tabúľ skla veľkých rozmerov. Všetky tieto merania Vám vieme urobiť pri našej návšteve. V čase keď sa normotvorcami „cizelujú“ tepelno-technické normy na okná na stotiny požadovanej hodnoty súčiniteľa prechodu tepla, je často realita trestuhodná!

Nesúhlasíme, aby straty tepla vyplývajúce z nekvality okien a izolačných skiel znášal ich užívateľ.

Ak by ani uvedené opatrenia neboli úspešné zostáva okrem výmeny okien kompenzácia zvýšených nákladov na kúrenie. Schému takéhoto výpočtu poskytneme zákazníkovi ako pridruženú službu ku skúške. Pokiaľ si užívateľ stavby objedná skúšku prievzdušnosti okien, ponúkame mu aj identifikáciu izolačných skiel na skúšaných oknách a v prípade namerania nízkeho obsahu argónu v dutinách alebo priehybu skiel, ponúkame aj výpočet nového súčiniteľa prechodu tepla izolačných skiel (Ug), ktorý je funkciou vzdialenosti medzi sklami (veľkosť dutiny) a obsahu inertného plynu (argónu), pri nezmenenej emisivite povrchov skla. Potom sa môže k stratám tepla z netesnosti okien pridružiť aj strata z vypočítaného horšieho súčiniteľa prechodu tepla izolačných skiel.